Skip to main content
Log in

Function of 90-kDa heat shock protein in cellular differentiation of human embryonal carcinoma cells

  • Growth, Differentiation and Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, P. W.; Damjanov, I.; Simon, D.; Banting, G. S.; Carlin, C.; Dracopoli, N. C.; Fogh, J. Plulipotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Lab. Invest. 50:147–162; 1984.

    PubMed  CAS  Google Scholar 

  • Arceci, R.; Pampfer, S.; Pollard, J. W. Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantion mouse development. Dev. Biol. 151:1–8; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Arrigo, A. P.; Darlix, J. L.; Khandijan, E. W.; Simon, M.; Sphar, P. F. Characterization of prosome from Drosophila and its similarity to the cytoplasmic structures formed by the low molecular weight heat-shock proteins. EMBO J. 4:399–406; 1985.

    PubMed  CAS  Google Scholar 

  • Bensaude, O.; Babinet, C.; Morang, M.; Jacob, F. Heat-shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305:331–333; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Bensaude, O.; Morange, M. Spontaneous high expression of heat-shock proteins in mouse embrynal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO J. 2:173–177; 1983.

    PubMed  CAS  Google Scholar 

  • Craig, E. A.; Weissman, J. S.; Horwich, A. L. Heat shock proteins and molcular chaperones; mediators of protein conformation and turnover in the cell. Cell 78:365–372; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Csermely, P.; Kajtar, J.; Hollosi, M.; Oikarinen, J; Somogyi, J. The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Biochem. Biophys. Res. Comm. 202:1657–1663; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Cutforth, T.; Rubin, G. M. Mutations in hsp83 and cdc37 impaor signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, H.; Hata, Y.; Matsubayashi, Y.; Takebe, Y.; Fujimoto, J. Expression pattern of SRα promoter in human embryonal carcinoma and transgenic tissue in mice. Acta Pathol. Jpn. 42:712–718; 1992.

    PubMed  CAS  Google Scholar 

  • Galea-Lauri, J.; Latchman, D. S.; Katz, D. R. The role of the 90-kDa heat shock protein in cell cycle control and differentiation of the monoblastoid cell line U937. Exp. Cell Res. 226:243–254; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gruppi, C. M.; Zakeri, Z. F.; Wolgemuth, D. J. Stage and lineage-regulated expression of two HSP90 transcrpts during mouse germ cell differentiation and embryogenesis. Mol. Reprod. Dev. 28:209–214; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hata, F.; Fujimoto, J.; Ishii, E., et al. Differentiation of human germ cell tumor cells in vivo and in vitro. Acta Histochem. Cytochem. 25:563–576; 1992.

    Google Scholar 

  • Hightower, L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hightower, L.; Nover, L. Heat shock and development. New York: Springer-Verlag; 1991:58–164.

    Google Scholar 

  • Jakob, U.; Buchner, J. Assisting spontaneity: the role of Hsp90 and Small Hsps as molecular chaperones. TIBS 19:205–211; 1994.

    PubMed  CAS  Google Scholar 

  • Jerome, V.; Leger, J.; Devin, J.; Baulieu, E. E.; Catelli, M. Growth factors acting via tyrosine kinase receptors induce HSP90α gene expression. Growth Factors 4:317–327; 1994.

    Google Scholar 

  • Jerome, V.; Voure'h, C.; Baulieu, E. E.; Catelli, M. G. Cell cycle regulation of the chicken hsp90α expression. Exp. Cell Res. 205:44–51; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Koyasu, S.; Nishida, E.; Kadowaki, T., et al. Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc. Natl. Acad. Sci. USA 83:8054–8058; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lai, B. T.; Chin, N. W.; Stanek, A. E.; Keh, W.; Lanks, K. W. Quantitation and intracellular localization of the 85kDa heat shock protein by using monoclonal and polyclonal antibodies. Mol. Cell. Biol. 4:2802–2810; 1984.

    PubMed  CAS  Google Scholar 

  • Lee, S. J. Expression of HSP86 in male germ cells. Mol. Cell. Biol. 10:3239–3242; 1990.

    PubMed  CAS  Google Scholar 

  • Marrs, K. A.; Casey, E. S.; Capitant, S. A.; Bouchard, R. A.; Dietrich, P. S.; Mettler, I. J.; Sinibaldi, R. M. Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Dev. Genetics 15:27–41; 1993.

    Article  Google Scholar 

  • Maruyama, T.; Umezawa, A.; Kusakari, S.; Kikuchi, H.; Nozaki, M.; Hata, J. Heat shock induces differentiation of human embryonal carcinoma cells into trophoectoderm lineages. Exp. Cell Res. 224:123–127; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Morange, M.; Diu, A.; Bensaude, O.; Babinet, C. Altered expression of heat shock proteins in embryonal carcinoma cells and mouse early embryonic cells. Mol. Cell. Biol. 4:730–735; 1984.

    PubMed  CAS  Google Scholar 

  • Morimoto, R. I. Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410; 1983.

    Article  Google Scholar 

  • Ohsaka, S.; Bunick, D.; Hayashi, Y. Immunocytochemical observation of the 90 kd heat shock protein (HSP90): high expression in primordial and pre-meiotic germ cells of male and female rat gonads. J. Histochem. Cytochem. 43:67–76; 1995.

    Google Scholar 

  • Ozawa, K.; Murakami, Y.; Eki, T.; Soeda, E.; Yokoyama, K. Mapping of the gene family for human heat-shock protein 90α to chromosomes 1, 4, 11, and 14. Genomics 12:214–220; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Picard, D.; Khursheed, B.; Garabedian, M. J.; Fortin, M. G.; Lindquist, S.; Yamamoto, K. R. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rebbe, N. F.; Ware, J.; Bertina, R. M.; Modrich, P.; Stafford, D. W. Nucleotide sequence of a cDNA for a member of the hyman 90-kDa heat-shock protein family. Gene 53:235–245; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, T.; Sanchez, E. R.; Bresnick, E. H.; Schlesinger, M. J.; Toft, D. O.; Pratt, W. B.; Welsh, M. J. Immunofluorescence colocalization of the 90-kDa heat shock protein and microtubules in interphase and mitotic mammalian cells. Eur. J. Cell Biol. 50:66–75; 1989.

    PubMed  CAS  Google Scholar 

  • Rutherford, S. L.; Lindquist, S. HSP90 as a capacitator for morphological evolution. Nature 396:336–342; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989;16.3–16.72.

    Google Scholar 

  • Sanchez, E. R.; Toft, D. O.; Schlesinger, M. J.; Pratt, W. B. Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat hock protein. J. Biol. Chem. 260:12398–12401; 1985.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M. J. Heat shock proteins. J. Biol. Chem. 265:12111–12114; 1990.

    PubMed  CAS  Google Scholar 

  • Stancato, L. F.; Chow, Y. H.; Hutchison, K. A.; Perdew, G. H.; Jove, R.; Pratt, W. P. Raf exits in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J. Biol. Chem. 268:21711–21716; 1993.

    PubMed  CAS  Google Scholar 

  • Stepanova, L.; Leng, X.; Parker, S. B.; Harper, J. W. Mammalian p50cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 10:1491–1502; 1996.

    PubMed  CAS  Google Scholar 

  • Stock, J. Signal transduction: gyrating protein kinases. Curr. Biol. 9:R364–367; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N.; Yamada, T.; Matsuoka, K.; Hiraoka, N.; Iwamaru, Y.; Hata, J. Functional expressions of fms and M-CSF during trophoectodermal differentiation of human embryonal carcinoma cells. Placenta 20: 203–211;1999.

    Article  PubMed  CAS  Google Scholar 

  • Takebe, Y.; Sciki, M.; Fujisawa, J.; Hoy, P.; Yokota, K.; Arai, K.; Yoshida, M.; Arai, N. SRα promotor: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8:466–472; 1988.

    PubMed  CAS  Google Scholar 

  • Yamada, T.; Suzuki, N.; Hiroka, N.; Matsuoka, K.; Fukushima, S.; Hashiguchi, A.; Hata, J. Apoptosis of human embryonal carcinoma cells with in vitro differentiation. Cell Struct. Funct. 21:53–61; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y.; Lindquist, S. Heat-shock protein hsp90 governs the activity of pp60v-8rc kinase. Proc. Natl. Acad. Sci. USA 90:7074–7078; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Hashiguchi, A., Fukushima, S. et al. Function of 90-kDa heat shock protein in cellular differentiation of human embryonal carcinoma cells. In Vitro Cell.Dev.Biol.-Animal 36, 139–146 (2000). https://doi.org/10.1290/1071-2690(2000)036<0139:FOKHSP>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0139:FOKHSP>2.0.CO;2

Key words

Navigation